Silicon Labs已经在Wireless Gecko第一代和第二代无线SoC平台中提供机器学习应用开发的支持,包括最新发布的带有内置AI/ML硬件加速器的BG24和MG24系列产品。这是一个通过软件启用的协同处理器,我们的两个合作伙伴SensiML和Edge Impulse已经更新了他们的平台,以便在为BG24或MG24开发代码时自动使用硬件加速器。确切地说是选择TensorFlow内核由该协处理器加速,以减轻MCU的负担并允许它执行其他任务,如无线通信。任何将TensorFlow Lite用于微控制器(TensorFlow Lite for Microcontrollers, TFLM)的开发者或第三方都将能够自动利用硬件加速器的优势。
关于机器学习解决方案,开发者需要了解什么?
尽管可以完全围绕机器学习构建应用程序,但我们相信大多数人都会使用机器学习为嵌入式无线产品添加新的差异化功能。我们将这种方法称为“机器学习作为一种功能(Machine Learning as a Feature)”。开发一个将机器学习作为功能集成的应用程序需要两个不同的工作流程: